
Fast Optimal Load Balancing Algorithms for 1D Partitioning

Ali Pınar Cevdet Aykanat
Department of Computer Science Computer Engineering Department

University of Illinois at Urbana-Champaign Bilkent University, Ankara, Turkey
alipinar@cse.uiuc.edu aykanat@cs.bilkent.edu.tr

Proposed running head : Fast Optimal Load Balancing for 1D Partitioning

Corresponding author : Assoc. Prof. Cevdet Aykanat
Computer Engineering Department
Bilkent University
TR-06533, Ankara, TURKEY
e-mail: aykanat@cs.bilkent.edu.tr
tel : +90 (312) 290-1625
fax : +90 (312) 266-4126

This work is partially supported by The Scientific and Technical Research Council of Turkey under grant EEEAG-199E001

1

Abstract

One-dimensional decompositionof nonuniformworkload arrays for optimal load balancing is investigated. The

problemhas been studied in the literature as "chains-on-chains partitioning" problem. Despite extensive research

efforts, heuristics are still used in parallel computing community with the "hope" of good decompositions and

the "myth" of exact algorithms being hard to implement and not runtime efficient. The main objective of this

paper is to show that using exact algorithms instead of heuristics yields significant load balance improvements

with negligible increase in preprocessing time. We provide detailed pseudocodes of our algorithms so that our

results can be easily reproduced. We start with a review of literature on chains-on-chains partitioning problem.

We propose improvements on these algorithms as well as efficient implementation tips. We also introduce novel

algorithms, which are asymptotically and runtime efficient. We experimented with datasets from two different

applications: Sparse matrix computations and Direct volume rendering. Experiments showed that the proposed

algorithms are 100 times faster than a single sparse-matrix vector multiplication for 64-way decompositions

on average. Experiments also verify that load balance can be significantly improved by using exact algorithms

instead of heuristics. These two findings show that exact algorithms with efficient implementations discussed

in this paper can effectively replace heuristics.

KeyWords : one-dimensional partitioning; optimal load balancing; chains-on-chains partitioning; dynamic

programming; iterative refinement; parametric search; parallel sparsematrix vector multiplication; image-space

parallel volume rendering.

2

1 Introduction
In this work, we investigate block partitioning of possibly multi-dimensional nonuniform domains over one-

dimensional (1D) workload arrays. The communication and synchronization overhead is assumed to be handled

implicitly by the selection of proper partitioning and parallel computation schemes at the beginning, so that

load balance is the only metric explicitly considered in the decomposition. The load balancing problem in the

partitioning can be modeled as the chains-on-chains partitioning (CCP) problemwith nonnegative task weights

and unweighted edges between successive tasks. The objective of the CCP problem is to find a sequence of

1 separator indices to divide a chain of tasks with associated computational weights into consecutive

parts such that the bottleneck value—the load of the maximally loaded part—is minimized.

The first polynomial time algorithm for solving the CCP problem was proposed by Bokhari [4]. Bokhari’s
3 -time algorithm is based on finding a minimum path on a layered graph. Nicol and O’Hallaron [30]

reduced the complexity to 2 by decreasing the number of edges in the layered graph. The algorithm

paradigms used in the following works can be classified as dynamic programming (DP), iterative refinement,

and parametric search . Anily and Federgruen [1] initiated the DP approach with an 2 -time algorithm.

Hansen and Lih [13] independently proposed an 2 -time algorithm. Choi and Narahari [6], and Olstad

and Manne [34] introduced asymptotically faster -time, and -timeDP-based algorithms,

respectively. Iterative refinement approach starts with a partition and iteratively tries to improve the solution.

The log -time algorithm proposed by Manne and Sørevik [26] falls into this class.

The parametric-search approach relies on repeated probing for the existence of a partition with a bottleneck

value no greater than a given value. Such a probing takes time since every task has to be examined. Since

probing needs to be performed repeatedly, an individual probe can efficiently be performed in lg -time

through binary search, after performing an initial prefix-sum operation in -time for task chains with zero

communication costs [17]. Later, lg -time probe algorithms were proposed to handle task chains with

nonzero communication costs [19, 20, 21, 32]. Finally, the complexity of an individual probe call was reduced

to lg by Han, Narahari, and Choi [12].

The parametric-search approach goes back to Iqbal’s [16, 20] work describing an -approximate algorithm,

which performs lg probe calls. Here, denotes the total task weight and denotes the desired

accuracy. Iqbal’s algorithm exploits the observation that the bottleneck value is in the range ,

and performs a binary search in this range by making lg probe calls. This work was followed

by several exact algorithms involving efficient schemes for the search over bottleneck values by considering

only subchain weights. Nicol and O’Hallaron [30, 32] proposed a search scheme which requires at most 4

probe calls. Iqbal and Bokhari [21] relaxed the restriction of this algorithm [30, 32] on bounded task weight

and communication cost, by proposing a condensation algorithm. Iqbal [18] and Nicol [32, 33] concurrently

proposed an efficient search scheme which finds an optimal partition after only lg probe calls.

Asymptotically best algorithms were proposed by Frederickson [7, 8] and Han, Narahari, and Choi [12].

1

Frederickson proposed an -time optimal algorithm using parametric search. Han et. al. proposed a

recursive algorithmwith complexity 1 for any small 0. However, these twoworks have mostly

centered around decreasing the asymptotic running time, disregarding the usefulness of the presented methods

in application.

Despite these extensive research efforts on the solution of the CCP problem, heuristics are still commonly

used in the parallel computing community. A recent research work [27] exists that is devoted to proposing

efficient heuristics for the CCP problem. This attitude depends on the ease of implementation, efficiency, and

expectation of “good” quality decompositions of heuristics, and the misconception that exact CCP algorithms

are not affordable as a preprocessing step for efficient parallelization. This work proposes efficient exact CCP

algorithms. The implementation details and the pseudocodes of the proposed algorithms are clearly presented

so that they can easily be reproduced. In order to justify the use of the proposed algorithms, we also demonstrate

that qualities of the decompositions obtained through heuristics substantially deviate from those of the optimal

ones through experimental results on a wide range of real-world problems.

We run an effective heuristic, as a pre-processing step, to find a “good” upper bound on the optimal

bottleneck value. Then, we exploit the lower and upper bounds on the optimal bottleneck value to restrict

the search space for separator-index values. This separator-index bounding scheme is exploited in a static

manner in the DP algorithm drastically reducing the number of table entries computed and referenced. A

dynamic separator-index bounding scheme is proposed for parametric search algorithms. This scheme narrows

separator-index ranges after each probe call. The upper bound on the optimal bottleneck value is also exploited

to find a much better initial partition for the iterative-refinement algorithmproposed byManne and Sørevik [26].

We also propose a different iterative-refinement scheme, which is very fast for small to medium number of

processors. The observations in the proposed iterative-refinement scheme is further exploited for incorporating

the subchain-weight concept into Iqbal’s [16, 20] approximate bisection algorithm tomake it an exact algorithm.

Two distinct application domains are investigated for experimental performance evaluation of the proposed

algorithms. These are 1D decomposition of irregularly sparse matrices for parallel matrix-vector multiplication

(SpMxV), and decomposition for image-space parallel volume rendering. SpMxV is the most time consuming

operation in iterative solvers,which arewidely used for the solution of sparse linear systemof equations. Volume

rendering is widely used for scientific visualization. Integer and real valued 1D workload arrays arising in

the former and latter applications are the distinct features of these two applications. Furthermore, SpMxV, a

fine-grain application, is exploited to demonstrate the feasibility of using optimal load balancing algorithms

even in sparse-matrix decomposition. Experiments with the proposed CCP algorithms on a wide range of

sparse test matrices show that 64-way decompositions can be achieved in 100 times less than a single SpMxV

computation time, while producing 4 times better load imbalance values than the most effective heuristic, on

average. Experimental results on volume rendering dataset show that exact algorithms can produce 3.8 times

better 64-way decompositions than the most effective heuristic, while being only 11 percent slower, on average.

2

Existing load–balancing models for parallel iterative solvers consider only the SpMxV operations. In

this work, we also propose a new load balancing model which considers both the SpMxV and linear vector

operations. The proposed model enables the use of the CCP algorithms without any additional overhead.

In this work, we also consider the load–balancing problem for heterogeneous systems. We briefly mention

about the modifications needed to enable the use of the proposed CCP algorithms for heterogeneous systems.

Finally, we prove the NP-Completeness of the chains partitioning (CP) problem for heterogeneous systems,

where processor permutation is allowed in subchain to processor assignment.

The organization of the paper is as follows. Section 2 presents CCP problem definition. A survey on

the existing CCP algorithms is presented in Section 3. Proposed CCP algorithms are discussed in Section 4.

Load-balancing applications used in experimentations are described in Section 5 and performance results are

discussed in Section 6. Appendix A briefly presents proposed load-balancing model for iterative solvers, and

Appendix B presents our discussion on CCP and CP problems for heterogeneous systems.

2 Preliminaries
In the CCP problem, a computational problem decomposed into a chain 1 2 of task/modules

with the associated positive computational weights 1 2 is to be mapped onto a chain

1 2 of homogeneous processors. A subchain of is defined as any subset of contiguous

tasks, and the subchain consisting of tasks 1 is denoted as . Computational load of

subchain is equal to . From the contiguity constraint, a partition should map contiguous

subchains to contiguous processors. Hence, a -way chain-partition of a task chain with tasks onto

a processor chain with processors is described by a sequence 0 1 2 of 1 separator

indices, where 0 1 2 with 0 0 and . Here, denotes the index of the last task

of the th part mapped to processor so that gets the subchain 1 1 with load 1 1

for 1 2 . Hence, partition and mapping will be used interchangeably throughout the paper, since

a partition also defines a mapping. Cost of a partition is determined by the maximum processor

execution time among all processors, i.e., max1 . This value of a partition is called

its bottleneck value, and the processor/part defining it is called the bottleneck processor/part. Hence, the CCP

problem can be defined as finding a mapping which minimizes the bottleneck value .

3 Previous Work on the CCP Problem
Each CCP algorithm discussed in this section and Section 4 involves an initial prefix-sum operation on task-

weight array for the efficiency of subsequent subchain-weight computations. So, in the discussion of each

algorithm, is used to refer to the prefix-summed -array, where cost of this initial prefix-sum operation is

considered in the complexity analysis. The presentation of all algorithms focus only on finding the bottleneck

value of optimal partition(s). An optimal solution can be easily and efficiently constructed by making a

PROBE call discussed in Section 3.4 after finding . This approach avoids the overhead of maintaining

additional information during the course of the algorithmneeded to ease the construction of an optimalpartition.

3

3.1 Heuristics
Most commonly used heuristic is based on recursive bisection (RB). RB achieves -way partitioning through

lg bisection levels, where is a power of 2. At each bisection step in a level, the current chain is

divided evenly into two subchains. Although optimal division can easily be achieved at every bisection step,

the sequence of optimal bisections may lead to poor load balancing. RB can be efficiently implemented in

lg time, by first performing a prefix-sum operation on the workload array , with complexity

, and then making 1 binary searches in the prefix-summed -array each with complexity lg .

Miguet and Pierson [27] recently proposed two other heuristics. The first heuristic (H1) computes the

separator values such that is the largest index where . Here, is the ideal bottleneck

value, and 1 denotes the sum of all task weights. The second heuristic (H2), further refines

the separator indices by incrementing each value found in H1 if 1 . These

two heuristics can also be implemented in lg time, by performing 1 binary searches in the

prefix-summed -array.

Miguet and Pierson [27] have already proved the upper bounds on the bottleneck values of the partitions

found by H1 and H2 as 1 2 , where max1 denotes the maximum task

weight. The following lemma establishes a similar bound for the RB heuristic.

LEMMA 1. Let 0 1 be a partition constructed by the RB heuristic for a given CCP problem

instance . Then, satisfies 1 .

PROOF. Consider the first bisection step. There exists an index 1 1 such that both 1 1 1 1 1

2 and both 1 1 1 1 1 1, 1 1 1 1 2. The worst case for RB occurs when

1 and 1 1 1 1 1 2. Without loss of generality, assume that 1 is assigned

to the left part so that 2 1 and 1 2 2 2. In a similar worst-case bisection of 1 2,

there exists an index 2 such that 2 and 1 2 1 2 1 2 4, and 2 is assigned

to the left part so that 4 2 and 1 4 4 4 3 4 . For a sequence

of lg such worst case bisection steps on the left parts, processor 1 will be the bottleneck processor with

load 1 1 1 .

3.2 Dynamic Programming
The overlapping subproblem space can be defined as , for 1 2 and 1 ,

where denotes the -way CCP of the prefix task-subchain 1 1 2 onto the prefix processor-

subchain 1 1 2 . The lower and upper bounds on index for a particular are because of

the fact that there is no merit in leaving a processor empty in any mapping. From this subproblem space

definition, the optimal substructure property of the CCP problem can be shown by considering an optimal

mapping 0 1 with a bottleneck value for the CCP subproblem . If the last

processor is not the bottleneck processor in , then 1
1 0 1 1 should be an optimal mapping

4

DP
1 for 1 2 ;

for 2 to do
1;

for to do
if 1 then
repeat 1 until 1 ;
if 1 1 then

1;
;

else
1 ;

else
1 ;

return ;

Figure 1: -time dynamic-programming algorithm proposed by Choi and Narahari [6], and Olstad
and Manne [34].

for the subproblem 1
1
. Hence, the recursive definition for the bottleneck value of an optimal mapping

becomes
min
1

max 1
1 (1)

In (1), search for index corresponds to search for separator 1 so that remaining subchain 1 is assigned

to the last processor in an optimal mapping of . The bottleneck value of an optimal mapping can

be computed using (1) in a bottom-up fashion starting from 1
1 for 1 2 . An initial prefix-sum

on the workload array enables the constant-time computation of the subchain weight of the form 1

through 1 . Computing using (1) takes time for each and , and thus the

algorithm takes 2 time since the number of distinct subproblems is equal to 1 .

Choi and Narahari [6], and Olstad and Manne [34] reduced the complexity of this scheme to and

, respectively, by exploiting the following observations that hold for positive task weights. For

a fixed in (1), the minimum index value defining cannot occur at a value less than the minimum

index value 1 defining 1, i.e., 1 1 . Hence, the search for optimal can start from

1. In (1),
1 for a fixed is a nondecreasing function of , and 1 for a fixed is a decreasing

function of reducing to 0 at . So, two distinct cases occur in semi-closed interval 1 for . If

1
1 initially then these two functions intersect in 1 . In this case, search for continues

until 1
1 and then only and 1 are considered for setting as if 1 and

1 otherwise. Note that this scheme automatically detects 1 if 1 and 1 intersect in

open interval 1 . If, however, 1
1 initially then 1 lies above 1 in closed interval

1 . In this case, the minimum value occurs at the first value of , i.e., 1. These improvements

lead to an -time algorithm since the computation of all values for a fixed makes

references to already computed 1 values. Fig. 1 displays a run-time efficient implementation scheme of

this -timeDP algorithm, which avoids the explicit min-max operation required in (1). In Fig. 1,

values are stored in a table whose entries are computed in row–major order.

5

MS
for 0 1 1; ;
for 1 1; ;

repeat
is maximum over 1 ;

;
if 1 1 then
exit the repeat-loop;

;
while and 1 do

1 1 1;
1 ;

1 1 1 ;
if then

1;
until 1 ;
return ;

Figure 2: Iterative refinement algorithm proposed by Manne and Sorevik [26].
3.3 Iterative Refinement
The algorithm proposed by Manne and Sorevik [26], referred to here as the MS algorithm, is based on finding

a sequence of non-optimal partitions such that there exists only one way each partition can be improved. For

this purpose, they introduce a special kind of partition, namely the leftist partition (LP). Consider a partition

such that is the leftmost processor containing at least two tasks. is defined as an LP if increasing the load

of any processor that lies to the right of by augmenting the last task of 1 to makes a bottleneck

processor with a load greater than or equal to .

Let be an LP with bottleneck processor and bottleneck value . If contains only one

task then is optimal. So, assume that contains at least two tasks. The refinement step, which is shown by

the inner while-loop in Fig. 2, then tries to find a new LP of lower cost by successively removing the first task

of and augmenting it to 1 for 1 until . Unsuccessful refinement occurs when the

while-loop proceeds until 1 with . Manne and Sorevik [26] proved that a successful refinement of

an LP gives a new LP and that LP must be optimal if the refinement is unsuccessful. So, an initial LP is needed

to start the algorithm. As shown in Fig. 2, Manne and Sorevik [26] proposed to use an initial LP where the

1 leftmost processors each have only one task and last processor contains the rest of the tasks.

TheMSalgorithmmoves each separator index atmost times so that the total number of separator-index

moves is . A max-heap is maintained for the processor loads to speed up the operation of finding

a bottleneck processor at the beginning of each repeat-loop iteration. The cost of each separator-index move is

lg) since it necessitates one decrease-key and one increase-key operations. So, the overall complexity of

the MS algorithm is lg .

3.4 Parametric Search
The parametric-search approach relies on repeated probing for the existence of a partition with a bottleneck

value no greater than a given value, i.e., . The probe algorithmsexploit the greedy-choice property

on the existence and construction of . The greedy choice here is tominimize the work remaining after loading

processor subject to for 1 1 in order. The PROBE functions given in Fig. 3 exploit

6

PROBE PROBE
0 0; 1; 0 0; 1; ;

; ;
while and do while and do

BINSRCH 1 1 ; while do
; ;

1; BINSRCH ;
if then ;
return TRUE; 1;

else if then
return FALSE; return TRUE;

else
return FALSE;

(a) (b)

Figure 3: (a) Standard probe algorithm with lg2 complexity, (b) lg2 -time probe algo-
rithm proposed by Han, Narahari, and Choi [12].

this greedy property as follows. PROBE finds the largest index 1 so that 1 1 , and assigns subchain

1 1 to processor 1 with load 1 1 1 . Hence, the first task in the second processor is 1 1. PROBE then

similarly finds the largest index 2 so that 1 1 2 , and assigns the subchain 1 1 2 to processor 2 with

load 1 1 1 2 . This process continues until either all tasks are assigned or the processors are exhausted.

The former and latter cases denote the feasibility and infeasibility of , respectively.

Fig. 3(a) illustrates the standard probe algorithm. As seen in Fig. 3, the indices 1 2 1

are efficiently found through binary search (BINSRCH) on the prefix-summed -array. In this figure,

BINSRCH searches in the index range to compute the index such

that and 1 . The complexity of the standard probe algorithm is
1
0 lg lg . Han, Narahari and Choi [12] proposed an lg -time probe

algorithm (see Fig. 3(b)) exploiting repeated binary searches on the same -array with increasing search

values. Their algorithm divides the chain into subchains of equal length. At each probe call, a linear search

is performed on the weights of the last tasks of these subchains to find out in which subchain the search

value could be, and then binary search is performed on the respective subchain of length . Note that since

the probe search values always increase, linear search can be performed incrementally, that is search continues

from the last subchain that was searched to the right. Thus, the total time for searches on numbers is only

. This means a total cost of lg for binary searches, and hence the probe function.

3.4.1 Bisection as an Approximation Algorithm

Let be the binary-valued function where 1 if PROBE(B) is true and 0 if PROBE(B)

is false. It is clear that is nondecreasing in . It is also clear that lies between

and . These observations are exploited in the bisection algorithm leading to an efficient

-approximate algorithm, where is the desired precision. Interval is conceptually discretized

into bottleneck values, and binary search is used in this range to find the minimum

feasible bottleneck value . Fig. 4 illustrates the bisection algorithm. The bisection algorithm performs

lg PROBE calls and each PROBE call costs lg . Hence, the bisection algorithm runs

in lg lg time, where cost comes from the initial prefix-sum operation on .

The performance of this algorithm deteriorates when lg becomes comparable with .

7

-BISECT)
; ;

repeat
2;

if PROBE then
;

else
;

until ;
return ;

Figure 4: Bisection as an -approximation algorithm.
3.4.2 Nicol’s Algorithm
Nicol’s algorithm [33] exploits the fact that any candidate value is equal to weight of a subchain. The

naive solution is to generate all subchain weights of the form , sort them, and then use binary search to find

the minimum value for which PROBE TRUE. Nicol’s algorithm efficiently searches for the earliest

range for which by considering each processor in order as a candidate bottleneck processor in

an optimal mapping. Let be the optimal mapping constructed by greedy PROBE , and let processor

be the first bottleneck processor with load 1 1 in 0 1 1 .

Under these assumptions, this greedy construction of ensures that each processor preceding is

loaded as much as possible with , for 1 2 1 in . Here, PROBE FALSE since

, and PROBE 1 TRUE since adding one more task to processor increases its load to

1 . Hence, if 1 (i.e., 1 is a bottleneck processor) then 1 is equal to the smallest index 1 such

that PROBE 1 1 TRUE, and 1 1 1. If, however, 1 then because of the greedy choice property

1 should be loaded as much as possible without exceeding 1, which implies that 1 1 1 and

hence 1 1 1 1. If 2 then 2 is equal to the smallest index 2 such that PROBE 1 2 TRUE, and

2 1 2. If 2 then 2 2 1. This iterative process continues to compute as the smallest

index for which PROBE 1 TRUE and save 1 , for 1 2 1 with . Finally,

optimal bottleneck value is selected as min1 .

Fig. 5 illustrates Nicol’s algorithm. As seen in this figure, given 1, is found by performing a binary

search over all subchain weights of the form 1 , for 1 , in the th iteration of the for-loop.

Hence, Nicol’s algorithm performs lg PROBE calls to find at iteration , and each PROBE call costs

lg . Thus, the cost of computing an individual value is lg lg . Since 1 such

values are computed, the overall complexity of Nicol’s algorithm is 2 lg lg , where the

cost comes from the initial prefix-sum operation on .

Two possible implementations of Nicol’s algorithm are presented in Fig. 5. Fig. 5(a) illustrates a straight-

forward implementation. Fig. 5(b) illustrates a careful implementation, which maintains and exploits the

information on the success or failure of previous probe calls to be able to determine the results of some future

probes without invoking the PROBE function. As seen in Fig. 5(b), this information is efficiently maintained as

an undetermined bottleneck-value range , which is dynamically refined in the while-loop depending

on the success or failure of the probe call. Any bottleneck value encountered outside the current range is

immediately accepted or rejected without any probe calls. Although this simple scheme does not improve the

complexity of the algorithm, it drastically reduces the number of probe calls thus drastically increasing the

run-time performance as will be discussed in Section 6.

8

NICOL- NICOL
0 1; 0 1; ; ;
for 1 to 1 do for 1 to 1 do

1; ; 1; ;
while do while do

2; 2;
1 1 ; 1 1

if PROBE then if then
; if PROBE then

else ;
1; ;

; else
1 1 ; 1;
1 1 ; ;

return min1 ; elseif
;

else
1;

;
1 1 ;
1 1 ;

return min1 ;
(a) (b)

Figure 5: Nicol’s [33] algorithm: (a) straightforward implementation, (b) careful implementationwith dynamic
bottleneck-value bounding.

4 Proposed CCP Algorithms
4.1 Restricting the Search Space
The proposed CCP algorithms exploit lower and upper bounds on the optimal bottleneck value to restrict

the search space for separator values as a preprocessing step. Natural lower and upper bounds for the

optimal bottleneck value of a given CCP problem instance are max and

, respectively. However, in coarse grain parallelization () of most

real-world applications. The presentation, here and hereafter, will be for even though

all findings to be presented also become valid by replacing with max . The following

lemma describes how to use these natural bounds on to restrict the search space for the separator values.

LEMMA 2. For a given CCP problem instance , if is a feasible bottleneck value in the range

, then there exists a partition 0 1 of cost with ,

for 1 2 1, where and are, respectively, the smallest and largest indices such that

1 and 1

PROOF. Let , where 0 . Partition can be constructed by PROBE(B), which loads the

first processors as much as possible subject to , for 1 2 . In the worst case, 1

for each of the first processors. So, we have 1 for 1 2 1.

However, it should be possible to divide the remaining subchain 1 into parts without exceeding

, i.e., 1 . So, we also have 1 . Note that

is an increasing, whereas is a decreasing function of . Hence, the minimum of max

occurs at the intersection of and , thus 1 .

For the proof of the upper bounds on values, we can start with 1 which holds

9

when for 1 2 . However, the condition 1 ensures

the feasibility of , since PROBE(B) can always load each of the remaining processors

with . So, we also have 1 . Here,

is an increasing, whereas is a decreasing function of . By following similar steps, we can obtain

1 .

COROLLARY 3. The separator range weights are 1 1 2

with a maximum value 2 at 2.

The use of this corollary requires finding , which brings an overhead equivalent to that of the prefix-

sum operation, hence should be avoided. In this work, we propose and adopt a practical scheme to construct

the bounds on separator indices. We run the RB heuristic to find a hopefully good bottleneck value ,

and use as an upper bound for bottleneck values, i.e., . Then, we run LR-PROBE

and RL-PROBE to construct two mappings 1 1
0

1
1

1 and 2 2
0

2
1

2 with
1 2 . Here, LR-PROBE denotes the left-to-right probe given in Fig. 3, whereas RL-PROBE

denotes a right-to-left probe function which can be considered as the dual of the LR-PROBE. RL-PROBE exploits

the greedy-choice property from right to left. That is, RL-PROBE assigns subchains from the right end towards

the left end of the task chain to processors in the order 1 1. From these two mappings, lower

and upper bound values for separator indices are constructed as 2 and 1 , respectively, for

1 1. These bounds are further refined by running LR-PROBE and RL-PROBE to construct

two mappings 3 3
0

3
1

3 and 4 4
0

4
1

4 , and then defining max 3 and

min 4 for 1 1. Lemmas 4 and 5 prove the correctness of these bounds.

LEMMA 4. For a given CCP problem instance and a feasible bottleneck value , let 1

1
0

1
1

1 , 2 2
0

2
1

2 be the partitions constructed by LR-PROBE , and RL-PROBE ,

respectively. Then, any partition 0 1 of cost satisfies 2 1 .

PROOF. By the property of LR-PROBE 1 is the largest index where 1 1 can be partitioned into parts

without exceeding . If 1 , then the bottleneck value will exceed and thus . By the property of

RL-PROBE 2 is the smallest index where 2 can be partitioned into parts without exceeding .

If 2 , then the bottleneck value will exceed and thus .

LEMMA 5. For a given CCP problem instance , let 3 3
0

3
1

3 , 4 4
0

4
1

4 be

the partitions constructed by LR-PROBE , and RL-PROBE , respectively. Then, for any feasible bottle-

neck value , there exists a partition 0 1 of cost which satisfies 3 4 .

PROOF. Consider the partition 0 1 constructed by LR-PROBE . It is clear that this partition

already satisfies the lower bounds, i.e., 3 . Assume that 4 , then the partition obtained by moving

back to 4 also yields a partition with cost , since 4 1 can be partitioned into parts

without exceeding .

10

The difference between Lemmas 4 and 5 is that the former ensures the existence of all partitions with cost

less than or equal to within the given separator-index ranges, whereas the latter only ensures the existence

of at least one such partition within the given ranges. The following corollary combines the results of these

two lemmas.

COROLLARY 6. For a given CCP problem instance and a feasible bottleneck value , let
1 1

0
1
1

1 , 2 2
0

2
1

2 , 3 3
0

3
1

3 , and 4 4
0

4
1

4 be the partitions

constructed by LR-PROBE , RL-PROBE , LR-PROBE(), and RL-PROBE , respectively. Then, for

any feasible bottleneck value in the range , there exists a partition 0 1 of cost

with , for 1 2 1, where max 2 3 and min 1 4 .

COROLLARY 7. The separator range weights become 2 min in the worst case, with

a maximum value at 2.

Lemma 2 and Corollary 6 directly infer the following theorem since .

THEOREM 8. For a given CCP problem instance , and and index bounds constructed

according to Lemma 2 or Corollary 6, there exists an optimal partition 0 1 with

, for 1 2 1.

Comparison of the separator range weights given in Lemma 2 and Corollary 6 shows that the separator

range weights produced by the practical scheme described in Corollary 6 may be twice worse than those of

Lemma 2 in the worst-case. However, this is only the worst-case behavior, and the practical scheme finds fairly

better bounds since the ordering of the chain usually prevents the worst-case behavior, and .

Experimental results given in Section 6 justify this expectation.

4.1.1 Complexity Analysis Models

Corollaries 3 and 7 give bounds on the weights of the separator-index ranges. However, we need bounds on the

sizes of these separator-index ranges for the sake of computational complexity analysis of the proposed CCP

algorithms. Here, the size 1 denotes the number of tasks within the th range .

Miguet and Pierson [27] propose the model for 1 2 in order to prove that their H1

and H2 heuristics allocate tasks to each processor. Here, denotes the average task

weight. This assumption means that the weight of each task is not too far away from the average task weight.

Using Corollaries 3 and 7, part of the model induces . Moreover,

part of the model can be exploited to induce the optimistic bound . However,

we find their model too restrictive, since the minimum and maximum task weights can substantially deviate

from . Hence, we here establish a looser and more realistic model on the task weights, so that for any

subchain with weight sufficiently larger than , average task weight within the subchain

satisfies . That is, 1 . This model, referred to here as model , directly

induces , since 2 2 for 1 2 1.

11

DP+
1 for 1 1 1 1;
1 1 1 ;

for 2 to do
1;

for to do
if 1 then
repeat 1 until 1 ;
if 1 1 then

1;
;

else
1 ;

else
1 ;

1 1
return ;

Figure 6: Dynamic-programming algorithm with static seperator-index bounding.

4.2 Dynamic-Programming Algorithm with Static Separator-Index Bounding
The proposed DP algorithm, referred to here as the DP+ algorithm, exploits the bounds on the separator indices

for the efficient solution of the CCP problem. Figure 6 illustrates the proposed DP+ algorithm where input

parameters and denote the index bound arrays, each of size , computed according to Corollary 6 with

. Note that since only need to be computed in the last row. As seen in

Fig. 6, only values for 1 are computed at each row by exploitingCorollary 6which

ensures the existence of an optimal partition 0 1 with . Thus, only these

values will be sufficient for the correct computation of 1 values for 1 1 1 1

at the next row 1.

As seen in Fig. 6, explicit range checking is not adopted in the proposed algorithm for the sake of utmost

efficiency. However, the -index may proceed beyond to 1 within the repeat-until-loop while

computing 1 with 1 1 in two cases. In both cases, functions 1 and intersect

in the open interval 1 so that 1 and 1 2 . In the first case,

1 so that 1 and intersect in 1 , which automatically implies that 1
1 with

1 since 1 as mentioned earlier in Section 3.2. In the second case, 1 for which

Corollary 6 guarantees that 1
1 1 thus we can safely select

1 . Note that

1 1 may correspond to a case leading to another optimal partitionwith
1

1 1.

As seen in Fig. 6, both cases are efficiently resolved by simply storing to 1 as a sentinel. Hence,

in such cases, the condition 1 1 in the if-then statement following the repeat-until-loop

statement always becomes true so that the -index automatically moves back to . Note that the scheme

of computing 1 for each row , which seems to be a natural solution, does not work since the correct

computation of 1
1 1 may necessitate more than one value beyond the index bound.

The nice property of the DP approach is that it can be used to generate all optimal partitions by maintaining

a matrix to store the minimum index values defining the values at the expense of increased

execution time and asymptotical increase in the space requirement. Recall that the index bounds and

computed according to Corollary 6 restrict the search space for at least one optimal solution. The index bounds

12

can be computed according to Lemma 5 to serve that purpose, since the search space restricted by Lemma 5

includes all optimal solutions.

The running time of the proposed DP+ algorithm is lg 1 . Here, cost comes

from the initial prefix-sum operation on the array, and lg cost comes from the running time of the

RB heuristic and computing the separator-index bounds and according to Corollary 6. Under model

, , and hence the complexity is lg 2 . The algorithm

becomes linear in , when the separator-index ranges do not overlap, and the condition 2 2

guarantees non-overlapping index ranges.

4.3 Iterative Refinement Algorithms

In this work, we improve the MS algorithm and propose a novel CCP algorithm, namely the bidding algorithm,

which is run-time efficient for small-to-medium number of processors. The main difference between the MS

and bidding algorithms is as follows: the MS algorithm moves along a sequence of feasible bottleneck values,

whereas the bidding algorithmmoves along a sequence of infeasible bottleneck values such that the first feasible

bottleneck value becomes the optimal.

4.3.1 Improving the MS Algorithm

The performance of the MS algorithm [26] strongly depends on the initial partition. The initial partition

proposed by Manne and Sorevik [26] satisfies the leftist partition constraints. But it leads to very poor run-

time performance. Here, we propose using the partition generated by PROBE(B) as an initial partition. This

partition is also a leftist partition, since moving any separator to the left will not help to decrease the load of

the bottleneck processor. This simple observation leads to significant improvement in run-time performance

of the algorithm. Also, using a heap as a priority queue does not give better run-time performance than using

a running maximum despite its superior asymptotic complexity. In our implementation, we used a running

maximum.

4.3.2 Bidding Algorithm

This algorithm increases the bottleneck value in an incremental manner, starting from the ideal bottleneck

value , until it finds a feasible partition, which happens to be an optimal one. Consider a partition

0 1 constructed by PROBE() for an infeasible . After detecting the infeasibility of this

value, the important issue is to determine the next larger bottleneck value to be investigated. Clearly, the

separator indices of the partitions to be constructed by the future PROBE(B) calls with will never be to

the left of the respective separator indices of . Moreover, at least one of the separators shouldmove to the right

in the hope of feasibility, since load of the last processor determines the infeasibility of the current value (i.e.,

). In order not to miss the smallest feasible bottleneck value, the next larger value is computed by

selecting the minimum of the processor loads that will be obtained by moving the end-index of every processor

to right by one position. That is, the next larger value is equal to min min1 1 . Here,

we call the 1 value as the bid of processor , which refers to the load of if the first task 1 of

13

BIDDING
0 for 0 1 1; ;

BIDS 0 ;
; 0;

while do
repeat 1
if 0 then

BINSRCH 1 1 1 ;
1 ;

else
while 1 do

1;
;
1;

if BIDS 1 then
BIDS ;

else
BIDS BIDS 1 ;

; ;
until or 1;
if BIDS then

;
else

BIDS ;
1;

return ;

Figure 7: Bidding algorithm.
the next processor is augmented to . Note that the bid of the last processor is equal to the load of the

remaining tasks. If the best bid comes from processor , probing with new is performed only for the

remaining processors 1 in the suffix 1 1: of the prefix-summed -array.

The bidding algorithm is presented in Fig. 7. The innermostwhile-loop implements a linear probing scheme,

such that the new positions of the separators are determined by moving them to the right, one by one. This linear

probing scheme is selected since the new positions of the separators are likely to be in a close neighborhood of

the previous ones. Note that binary search is used only for setting the separator indices for the first time. After

the separator index is set for processor during linear probing, the repeat-until-loop terminates if it is not

possible to partition the remaining subchain 1 into processors without exceeding the current

value, i.e., , where denotes the weight of the remaining subchain. In this case, the

next larger value is determined by considering the best bid among the first processors and rbid .

As seen in Fig. 7, we maintain a prefix-minimum array BIDS for computing the next larger value. Here,

BIDS is an array of records of length , where BIDS and BIDS store the best bid value of the

first processors and the index of the processor defining it, respectively. BIDS 0 is used to enable running

prefix-minimum operation.

The complexity of the bidding algorithm for integer task weights under model is lg
2 . Here, lg cost comes from the initial settings of separators through binary search.

The value is increased at most times, and each time the next value can be computed

in time, which induces the cost . The total area scanned by the separators is at most
2 . For non-integer task weights, the complexity can reach to lg 3

14

-BISECT+ RPROBE
; ;
; for 1 to 1 do

repeat BINSRCH ;
2; ;

if RPROBE then if then
for 1 to 1 do ; return TRUE;

; else
else return FALSE;
for 1 to 1 do ;

;
until ;
return ;

Figure 8: Bisection as an -approximation algorithm with dynamic seperator-index bounding.

in the worst case, which occurs when only one separator index moves to the right by one position at each

value. We should note here that the use of a min-heap for finding the next value enables terminating a

repeat-loop iteration as soon as a separator-index does not move. The trade-off in this scheme is the lg

cost to incur at each separator-index move because of the respective key-update operation on the heap. We

have also implemented this scheme and experimentally verified that it increases the overall execution time in

the CCP instances tested in Section 6.

4.4 Parametric Search Algorithms
In this work, we exploit the theoretical findings given in Section 4.1 to propose an improved probe algorithm.

The improved algorithm, referred to here as the restricted probe (RPROBE), exploits the bounds computed

according to Corollary 6 (with) to restrict the search space for separator values during the

binary searches in the prefix-summed -array. That is, BINSRCH in RPROBE searches

in the index range to find the index such that and

1 through binary search. This scheme reduces the complexity of an individual probe call to

1 lg lg lg by the results of Corollaries 3 and 7. Note that complexity of

RPROBE reduces to lg for sufficiently large where . Figs. 8, 9 and 10 illustrate

the RPROBE algorithms tailored for the respective parametric-search algorithms.

4.4.1 Approximate Bisection Algorithm with Dynamic Separator-Index Bounding

Proposed bisection algorithm, illustrated in Fig. 8, searches the space of bottleneck values in range

as opposed to . In this algorithm, if PROBE TRUE, then the search space is restricted to

values, and if PROBE FALSE, then the search space is restricted to values. In this work, we

exploit this simple observation to propose and develop a dynamic probing scheme to increase the efficiency of

successive PROBE calls, by modifying the separator index-bounds depending on the success and the failure of

the probes. Let 0 1 be the partition constructed by PROBE . Any future PROBE call

with will set the indices with . Thus, the search space for can be restricted to those indices

less than or equal to . Similarly, any future PROBE call with will set the indices with .

Thus, the search space for can be restricted to those indices greater than or equal to .

As illustrated in Fig. 8, dynamic update of separator-index bounds can be performed in time through a

15

EXACT-BISECT RPROBE
; ; ;

repeat for 1 to 1 do
2; BINSRCH ;

if RPROBE then ;
for 1 to 1 do ; 1

max1 ; 1
else if then
for 1 to 1 do ; return TRUE

min min1 1 else
until ; return FALSE
return ;

Figure 9: Exact bisection algorithm with dynamic seperator-index bounding.
simple for-loop over or arrays depending on failure or success of RPROBE(), respectively. However,

in our implementation, this update is efficiently achieved in 1 time through the pointer assignment

or depending on failure or success of the RPROBE().

Similar to the -BISECT algorithm, the proposed -BISECT+ algorithm is also an -approximation algorithm

for general workload arrays. However, both -BISECT and -BISECT+ algorithms become exact algorithm for

integer-valued workload arrays by setting 1. As shown in Lemma 1, . Hence, for integer-

valued workload arrays the maximum number of probe calls in the -BISECT+ algorithm is lg , thus the

overall complexity is lg lg lg lg under model . Here,

cost comes from the initial prefix-sum operation on the array, and lg cost comes from the running

time of the RB heuristic and computing the separator-index bounds and according to Corollary 6.

4.4.2 Bisection as an Exact Algorithm

In this work, we enhance the bisection algorithm to be an exact algorithm for general workload arrays by

appropriate update of the lower and upper bounds after each probe call. The idea is to move the upper and

lower bounds on the value of an optimal solution to a realizable bottleneck value, i.e., the total weight of a

subchain of after each probe call. This reduces the search space to the finite set of realizable bottleneck

values, as opposed to the infinite space of bottleneck values defined by a range . Each bisection step

is designed to eliminate at least one candidate value, thus the algorithm terminates in finite number of steps to

find the optimal bottleneck value.

After a probe call RPROBE(, current upper bound value is modified if RPROBE(succeeds.

Note that RPROBE(not only determines the feasibility of , but also constructs a partition with

. Instead of reducing the upper bound to we can further reduce to the bottleneck

value of the partition constructed by RPROBE(. Similarly, current lower bound

is modified when RPROBE(fails. In this case, instead of increasing the lower bound to , we can

exploit the partition constructed by RPROBE(to increase further to the smallest realizable bottleneck

value greater than . How to compute this value is already described in our bidding algorithm:
min min

1
1

where denotes the load of processor in . Fig. 9 presents the pseudocode of our algorithm.

Each bisection step divides the set of candidate realizable bottleneck values into two sets, and eliminates

16

one. The initial set can have a size between 1 and 2, initial number of realizable bottleneck values. Assuming

that they are equally likely (a more even distribution is likely if is chosen as the medium of and),

the expected complexity of the algorithm will be
1
2

2

1
lg lg

which has the solution lg lg lg lg . Here, lg lg is

the cost of a probe operation, and lg is the expected number of probe calls. Thus, the overall complexity

becomes lg lg lg lg , where cost comes from the initial prefix-sum

operation on the array.

4.4.3 Improving Nicol’s Algorithm as a Divide-and-Conquer Algorithm

The theoretical findings presented in previous sections can be exploited at different levels to introduce improve-

ment to the performance of Nicol’s algorithm. The obvious improvement is to use the proposed restricted probe

function instead of the conventional probe functions. The careful implementation scheme given in Fig. 5(b)

enables the use of dynamic separator-index bounding. In this work, we exploit the idea behind the bisection

algorithm to propose an efficient divide-and-conquer approach for Nicol’s algorithm for further improvement.

Consider the sequence of probes of the form PROBE 1 performed by Nicol’s algorithm for processor

1 to find the smallest index 1 such that PROBE 1 TRUE. Starting from a naive bottleneck-value

range 0 0 0 , the success and failure of these probe calls can be exploited to narrow

this range to 1 1 . That is, each PROBE 1 TRUE decreases the upper bound to 1 and each

PROBE 1 FALSE increases the lower bound to 1 . It is clear that we will have 1 1 1 1 1

1 1 at the end of this search process for processor 1. Now, consider the sequence of probes of the form

PROBE 1 performed for processor 2 to find the smallest index 2 such that PROBE 1 TRUE.

Our key observation is that the partition 0 1 2 1 to be constructed by any PROBE with

1 1 1 will satisfy 1 1 1 since 1 1 1 1 1. Hence, probe calls with 1

1 for processor 2 can be restricted to be performed in 1: , where 1: denotes the 1 1 th

suffix of the prefix-summed array. This simple yet effective scheme leads to an efficient divide-and-conquer

algorithm as follows. Let denote the CCP subproblem of -way partitioning of the 1 th

suffix 1 of the task chain onto the ()th suffix 1 2 of the

processor chain . Once the index 1 for processor 1 is computed, the optimal bottleneck value can be

defined by either 1 1 or the the bottleneck value of an optimal 1 -way partitioning of the suffix subchain

1 . That is, min 1 1 1
1

1
. Proceeding this way, once the indices 1 2 for

the first processors 1 2 are determined, min min1 1 .

This divide-and-conquer approach is presented in Fig. 10. At the th iteration of the outer for-loop, given

1, is found in the inner while-loop by conducting probes on 1: to compute 1 . As seen in

Fig. 10, the dynamic bounds on the separator indices are exploited in two distinctways according to Theorem 8.

First, the restricted probe function RPROBE is used for probing. Second, the search space for the bottleneck

17

NICOL+ RPROBE
0 1; ; ; ;
for 1 to 1 do for 1 to 1 do

; ; BINSRCH ;
while do ;

2; if then
1 1 ; return TRUE;

if then else
if RPROBE then return FALSE;
for 1 to 1 do ;

;
;

else
for 1 to 1 do ;

;
1;

elseif
;

else
1;

;
1 1 ;

1 1 ;
return min1 ;

Figure 10: Nicol’s algorithm with dynamic separator-index bounding.

values of the processors is restricted. That is, given 1, the binary search for over all subchain weights of

the form 1 1 for 1 is restricted to 1 1 values for .

Under model , the complexity of this algorithm is lg lg lg

for integer task weights. Because, the number of probe calls cannot exceed , since there are at most

distinct bound values in the range . For non-integer task weights, the complexity can be given as

lg lg 2 2 lg lg , since the algorithmmakes lg

probe calls. Here, cost comes from the initial prefix-sum operation on the array, and lg

cost comes from the running time of the RB heuristic and computing the separator-index bounds and

according to Corollary 6.

5 Load Balancing Applications
Here, we describe load-balancing applications used to test performance of proposed CCP algorithms.

5.1 Parallel Sparse Matrix Vector Multiplication
Sparse matrix vector multiplication (SpMxV) is one of the most important kernels in scientific computing.

Parallelization of repeated SpMxV computations requires partitioning and distribution of the sparse matrix.

Two possible 1D sparse-matrix partitioning schemes are rowwise striping (RS) and columnwise striping (CS).

Consider parallelization of SpMxV operations of the form in an iterative solver, where is an

sparse matrix, and and are 1 vectors. In RS, processor owns the th row stripe of and it

is responsible for computing , where denotes the th stripe of vector . In CS, processor

owns the th column stripe of and is responsible for computing , where 1 . All

vectors used in the solver are divided conformally with row or column partitioning in the RS or CS schemes,

18

respectively, in order to avoid the communication of vector components during the linear vector operations.

The RS and CS schemes require communication before or after the local SpMxV computations, thus they can

also be considered as pre and post communication schemes, respectively. In RS, each task corresponds

to the atomic task of computing the inner-product of row of matrix with the column vector . In CS, each

task corresponds to the atomic task of computing the sparse DAXPY operation , where

denotes the th column of . Hence, each nonzero entry in a row and column of A incurs a multiply-and-add

operation during the local SpMxV computations. Thus, computational load of task is the number of

nonzero entries in row (column) in the RS (CS) scheme. So, the load balancing problem in the rowwise and

columnwise block partitioning of a sparse matrix in the given ordering can be modeled as the CCP problem.

In RS (CS), by allowing only row (column) reordering, the load balancing problem can be described as the

number partitioning problem,which is known to beNP-Hard [10]. By allowing both rowand column reordering,

the problem of minimizing communication overhead while maintaining load balance can be described as graph

and hypergraph partitioning problems [5, 14], which are also known to be NP-Hard [9, 25]. However, possibly

high preprocessing overhead involved in these models may not be justified in some applications. If the

partitioner is to be used as a run-time library in a parallelizing compiler for a data-parallel programming

language [39, 41], row and column reordering lead to high memory requirement due to the irregular mapping

table and extra level of indirection in locating distributed data during each multiply-and-add operation [40].

Furthermore, in some applications, the natural row and column ordering of the sparse matrix may already be

likely to induce small communication overhead (e.g., banded matrices).

The proposed CCP algorithms are surprisingly fast such that the initial prefix-sum operation dominates their

execution times in sparse-matrix partitioning. In this work, we exploit compressed storage schemes of sparse

matrices to avoid the initial prefix-sum operation as follows: We assume the use of compressed row storage

(CRS) and compressed column storage (CCS) schemes for rowwise and columnwise striping, respectively.

In CRS, an array DATA of length NZ stores nonzeros of matrix , in row-major order, where NZ

denotes the total number of nonzeros in . An index array COL of length NZ stores the column indices of the

respective nonzeros in array DATA. Another index array ROW of length 1 stores the starting indices of the

respective rows in the other two arrays. Hence, any subchain weight can be efficiently computed using

ROW 1 ROW in 1 time without any preprocessing overhead. CCS is similar to CRS with

rows and columns interchanged, thus is computed using COL 1 COL in 1 time.

5.2 Sort-First Parallel Direct Volume Rendering
Direct volume rendering (DVR) methods are widely used in rendering unstructured volumetric grids for

visualization and interpretation of computer simulations performed for investigating physical phenomena in

various fields of science and engineering. A DVR application contains two interacting domains: object space

and image space. Object space is a 3Ddomain containing the volumedata to be visualized. Image space (screen)

is a 2D domain containing pixels from which rays are shot into the 3D object domain to determine the color

19

values of the respective pixels. Based on these domains, there are basically two approaches for data parallel

DVR: image-space and object-space parallelism, which are also called as sort-first and sort-last parallelism

according to the taxonomy based on the point of data redistribution point in the rendering pipeline [28]. Pixels

or pixel blocks constitute the atomic tasks in sort-first parallelism, whereas volume elements (primitives)

constitute the atomic tasks in sort-last parallelism.

In sort-first parallel DVR, screen is decomposed into regions and each region is assigned to a separate

processor for local rendering. The primitives, whose projection areas intersect more than one region, are

replicated in the processors assigned to those regions. Sort-first parallelism is a promising approach since each

processor generates a complete image for its local screen subregion. However, it faces load-balancing problems

in the DVR of unstructured grids due to uneven on-screen primitive distribution.

Image-space decomposition schemes for sort-first parallel DVR can be classified as static and adaptive [24].

Static decomposition is a view-independent scheme and the load-balancing problem is solved implicitly by

scattered assignment of pixels or pixel blocks. Load-balancing performance of this scheme depends on the

assumption that neighbor pixels are likely to have equal workload since they are likely to have similar views of

the volume. As the scattered assignment scheme assigns adjacent pixels or pixel blocks to different processors,

it disturbs image-space coherency and increases the amount of primitive replication. Adaptive decomposition

is a view-dependent scheme and load-balancing problem is solved explicitly by using the primitive distribution

on the screen.

In adaptive image-space decomposition, the number of primitives with bounding-box approximation is

taken to be the workload of a screen region. Primitives constituting the volume are tallied to a 2D coarse mesh

superimposed on the screen. Some primitives may intersect multiple cells. The inverse-area heuristic [29] is

used to decrease the amount of errors due to counting such primitives many times. Each primitive increments

the weight of each cell it intersects by a value inversely proportional to the number of cells the primitive

intersects. In this heuristic, if we assume that there are no shared primitives among screen regions, the sum of

the weights of individual mesh cells forming a region gives the number of primitives in that region. However,

shared primitives may still cause some errors, but such errors are much less than counting such primitives

multiple times while adding mesh-cell weights.

Minimizing the perimeter of the resulting regions in the decomposition is expected to minimize the com-

munication overhead due to the shared primitives. 1D decomposition, i.e., horizontal and vertical striping of

the screen, suffer from unscalability. Hilbert space-filling curve [35] is widely used for 2D decomposition of

2D non-uniform workloads. In this scheme [24], the 2D coarse mesh superimposed on the screen is traversed

according to the Hilbert curve to map the 2D coarse mesh to a 1D chain of mesh cells. Load-balancing problem

in this decomposition scheme reduces to the CCP problem. Using Hilbert curve as the space-filling curve is an

implicit effort towards reducing the total perimeter since Hilbert curve avoids jumps during the traversal of the

2D coarse mesh. Note that 1D workload array to be used for partitioning is a real-valued array because of the

inverse-area heuristic used for computing the weights of the coarse-mesh cells.

20

Table 1: Properties of the test set.
SPARSE-MATRIX DATASET DIRECT VOLUME RENDERING (DVR) DATASET

of workload: # of nonzeros ex. time # of workload
name tasks total per row/col (task) SpMxV name tasks total per task

msecs
NL 7039 105089 14.93 1 361 22.55 blunt256 17303 303K 17.54 0.020 1590.97
cre-d 8926 372266 41.71 1 845 72.20 blunt512 93231 314K 3.36 0.004 661.50
CQ9 9278 221590 23.88 1 702 45.90 blunt1024 372824 352K 0.94 0.001 411.04
ken-11 14694 82454 5.61 2 243 19.65 post256 19653 495K 25.19 0.077 3245.50
mod2 34774 604910 17.40 1 941 124.05 post512 134950 569K 4.22 0.015 1092.00
world 34506 582064 16.87 1 972 119.45 post1024 539994 802K 1.49 0.004 1546.78

6 Experimental Results
All CCP algorithms were implemented in C language. All experiments were carried out on a workstation

equipped with a 133MHz PowerPC and 64 MB of memory. We have experimented 16, 32, 64, 128, 256

way partitioning of each test data.

The dataset for sparse-matrix decomposition comes from sparse test matrices arising in linear programming

problems obtained from Netlib suite [11] and IOWA Optimization Center [15]. The sparsity pattern of these

matrices are obtained bymultiplyingthe respective rectangular constraintmatriceswith their transposes. Hence,

load balancing in the rowwise and columnwise decompositions are equivalent since the resulting matrices are

symmetric. Table 1 illustrates the properties of the test matrices. Note that the number of tasks in the sparse-

matrix (SpM) dataset also refers to the number of rows and columns of the respective matrix. The execution

time of a single SpMxV operation for each test matrix is also displayed in this table.

The dataset for image-space decomposition comes from sort-first parallel DVR of curvilinear grids blunt-fin

and post representing the results of computational fluid dynamic simulations. These grids are commonly used

by researchers in the volume rendering field. Raw grids consist of hexahedral elements and are converted

into unstructured tetrahedral data format by dividing each hexahedron into 5 tetrahedrons. Triangular faces

of tetrahedrons constitute the primitives mentioned in Section 5.2. Three distinct 1D workload arrays are

constructed both for blunt-fin and post as described in Section 5.2 for coarse meshes of resolutions 256 256,

512 512, and 1024 1024 superimposed on the screen of resolution 1024 1024. Properties of these six

workload arrays are displayed in Table 1. The number of tasks is much less than the coarse-mesh resolution,

because of the zero-weight tasks in the 1D workload arrays. The CCP problem on such workload arrays can

be solved by compressing tasks with nonzero weights. In Table 1, the , and columns display

the average, minimum and maximum task weights for both datasets.

Following abbreviations are used for the CCP algorithms: H1 and H2 refer to Miguet and Pierson’s [27]

heuristics described in Section 3.1. RB refers to the recursive-bisection heuristic described in Section 3.1. DP

refers to the -time dynamic-programming algorithm given in Fig. 1. MS refers to Manne and

Sorevik’s [26] iterative-refinement algorithmgiven in Fig. 2. BS refers to the -approximate parametric-search-

based bisection algorithm given in Fig. 4. NC- and NC refer to the straightforward and careful implementations

of Nicol’s [33] parametric-search algorithm given in Fig. 5(a) and Fig. 5(b), respectively. Abbreviations ending

with “+” are used to represent our improved versions of the above algorithms. That is, DP+, BS+, NC+ refer

to our algorithms given in Fig. 6, Fig. 8, Fig. 10, respectively, and MS+ refers to the algorithm described in

21

Table 2: Percent load imbalance values.
SPARSE-MATRIX DATASET DVR DATASET

CCP instance HEURISTICS OPT CCP instance HEURISTICS OPT
name K H1 H2 RB name K H1 H2 RB

16 2.60 2.44 1.20 0.35 16 4.60 1.20 0.49 0.34
32 5.02 5.75 3.44 0.95 32 6.93 2.61 1.94 1.12

NL 64 8.95 9.01 5.60 2.37 blunt256 64 14.52 9.44 9.44 2.31
128 33.13 27.16 22.78 4.99 128 38.25 24.39 16.67 4.82
256 69.55 69.55 60.78 14.25 256 96.72 37.03 34.21 34.21
16 2.27 0.98 0.53 0.45 16 0.95 0.98 0.98 0.16
32 4.19 4.42 3.74 0.63 32 1.38 1.38 1.18 0.33

cre-d 64 7.12 4.92 4.34 1.73 blunt512 64 2.87 2.69 1.66 0.53
128 25.57 18.73 16.70 2.88 128 5.62 8.45 4.62 0.97
256 37.54 26.81 35.20 10.95 256 14.18 14.33 9.34 2.28
16 1.85 1.85 0.58 0.58 16 0.94 0.57 0.95 0.10
32 5.65 2.88 2.24 0.90 32 1.89 1.21 0.97 0.14

CQ9 64 13.25 11.49 7.64 1.43 blunt1024 64 4.99 2.16 1.44 0.26
128 33.96 32.22 22.34 3.51 128 10.06 4.25 2.47 0.57
256 58.62 58.62 58.62 14.72 256 19.65 9.68 9.68 0.98
16 3.74 2.01 0.98 0.21 16 1.10 1.43 0.76 0.56
32 3.74 4.67 3.74 1.18 32 3.23 3.98 3.23 1.11

ken-11 64 13.17 13.17 13.17 1.29 post256 64 17.28 11.04 10.90 3.10
128 13.17 16.89 13.17 6.80 128 45.35 29.09 29.09 8.29
256 50.99 50.99 50.99 7.11 256 67.86 67.86 67.86 67.86
16 0.06 0.06 0.06 0.03 16 0.49 1.25 0.33 0.33
32 0.19 0.19 0.19 0.07 32 0.94 1.61 0.90 0.58

mod2 64 7.42 2.72 2.18 0.18 post512 64 4.85 5.33 4.85 0.94
128 16.15 6.29 2.46 0.41 128 18.03 14.55 10.15 1.72
256 19.47 19.47 18.92 1.23 256 30.03 25.29 25.29 3.73
16 0.27 0.18 0.09 0.04 16 0.70 0.70 0.53 0.20
32 0.63 0.37 0.27 0.08 32 1.49 1.49 1.41 0.54

world 64 4.73 4.73 4.73 0.28 post1024 64 2.85 2.85 1.49 0.91
128 6.37 6.37 6.37 0.76 128 13.15 11.79 9.10 1.11
256 27.99 27.41 27.41 1.11 256 40.50 13.37 14.19 2.54

AVERAGES OVER K
16 1.76 1.15 0.74 0.36 16 1.44 1.01 0.64 0.28
32 3.99 3.39 2.88 0.76 32 2.64 2.05 1.61 0.64
64 9.01 6.78 5.69 1.43 64 7.89 5.58 4.96 1.31
128 19.97 17.66 14.09 3.36 128 21.74 15.42 12.02 2.91
256 43.89 38.91 36.04 9.18 256 44.82 27.93 26.76 18.60

Section 4.3.1. BID refers to our new iterative-refinement-based bidding algorithm given in Fig. 7. EBS refers

to our exact bisection algorithm given in Fig. 9. Both BS and BS+ algorithms are effectively used as exact

algorithms for the SpM dataset with 1 by exploiting the integer-valued workload arrays arising in the SpM

dataset. However, performance of these two algorithms are not tested on the DVR dataset, since they remain

to be approximation algorithms because of the real-valued task weights in DVR.

Table 2 compares load-balancing quality of the heuristics and exact algorithms. In this table, percent

load-imbalance values are computed as 100 , where denotes the bottleneck value

of the respective partition and denotes the ideal bottleneck value. OPT values refer to the

load-imbalance values of the optimal partitions produced by exact algorithms, i.e., . Table 2

clearly shows that considerably better partitions can be obtained in both SpM and DVR datasets by using exact

load-balancing algorithms instead of heuristics. The quality gap between the solutions of exact algorithms and

heuristics increases with increasing . Only exceptions to these observations are 256-way partitioning of DVR

instances blunt256 and post256, for which the RB heuristic achieves to obtain optimal partitions.

Table 3 compares performances of the static separator-index bounding schemes discussed in Section 4.1.

The values displayed in this table correspond to the sum of the sizes of the separator-index ranges normalized

with respect to , i.e., 1
1 , where 1. For each CCP instance,

22

Table 3: Sizes of separator-index ranges normalized with respect to .
SPARSE-MATRIX DATASET DVR DATASET

CCP instance CCP instance
name K (N-K)K L2 L4 C6 name K (N-K)K L2 L4 C6

16 15.97 0.32 0.13 0.036 16 15.99 0.38 0.07 0.003
32 31.86 1.23 0.58 0.198 32 31.94 1.22 0.30 0.144

NL 64 63.43 4.97 2.24 0.964 blunt256 64 63.77 5.10 3.81 0.791
128 125.69 19.81 19.60 4.305 128 127.06 21.66 12.88 2.784
256 246.73 77.96 82.83 22.942 256 252.23 101.68 50.48 10.098
16 15.97 0.16 0.04 0.019 16 16.00 0.09 0.17 0.006
32 31.89 0.76 0.90 0.137 32 31.99 0.35 0.26 0.043

cre-d 64 63.55 2.89 1.85 0.610 blunt512 64 63.96 1.64 0.69 0.144
128 126.18 11.59 15.12 2.833 128 127.83 6.65 4.59 0.571
256 248.69 46.66 57.54 16.510 256 255.30 28.05 16.71 2.262
16 15.97 0.30 0.03 0.023 16 16.00 0.05 0.09 0.010
32 31.89 1.21 0.34 0.187 32 32.00 0.18 0.18 0.018

CQ9 64 63.57 4.84 2.96 0.737 blunt1024 64 63.99 0.77 0.74 0.068
128 126.25 19.20 18.66 3.121 128 127.96 3.43 2.53 0.300
256 248.96 74.84 86.80 23.432 256 255.82 13.92 20.36 1.648
16 15.98 0.28 0.11 0.024 16 15.99 0.35 0.04 0.021
32 31.93 1.10 1.13 0.262 32 31.95 1.50 0.52 0.162

ken-11 64 63.73 4.42 7.34 0.655 post256 64 63.79 6.12 4.26 0.932
128 126.89 17.60 14.56 4.865 128 127.17 26.48 23.68 4.279
256 251.56 69.18 85.44 13.076 256 252.68 124.76 90.48 16.485
16 15.99 0.16 0.00 0.002 16 16.00 0.13 0.02 0.003
32 31.97 0.55 0.04 0.013 32 31.99 0.56 0.14 0.063

mod2 64 63.88 2.14 1.22 0.109 post512 64 63.97 2.33 2.41 0.413
128 127.53 8.62 2.59 0.411 128 127.88 9.33 10.15 1.714
256 254.12 34.49 39.02 2.938 256 255.52 37.08 46.28 6.515
16 15.99 0.15 0.01 0.004 16 16.00 0.17 0.07 0.020
32 31.97 0.59 0.06 0.020 32 32.00 0.54 0.27 0.087

world 64 63.88 2.30 2.81 0.158 post1024 64 63.99 2.19 0.61 0.210
128 127.53 9.23 7.19 0.850 128 127.97 8.77 9.48 0.918
256 254.11 36.97 53.15 2.635 256 255.88 34.97 27.28 4.479

AVERAGES OVER K
16 15.97 0.21 0.06 0.018 16 16.00 0.20 0.08 0.011
32 31.88 0.86 0.68 0.136 32 31.98 0.73 0.28 0.096
64 63.52 3.43 2.63 0.516 64 63.91 3.03 2.09 0.426
128 126.07 13.68 12.74 2.731 128 127.65 12.72 10.55 1.428
256 248.26 54.28 57.55 14.089 256 254.57 56.74 41.93 6.915

L2, L4 and C6 denote separator-index ranges obtained according to results of Lemma 2, Lemma 4 and Corollary 6.

represents the size of the search space for the separator indices and the total number of table entries referenced

and computed by the DP algorithm. Columns labeled as L2, L4 and C6 display the total range sizes obtained

according to the results of Lemma 2, Lemma 4 and Corollary 6, respectively.

As seen in Table 3, proposed practical scheme C6 achieves substantially better separator-index bounds

than L2, despite its worse worst-case behavior (see Corollaries 3 and 7). Comparison of columns L4 and

C6 displays the substantial benefit of performing left-to-right and right-to-left probes with according to

Lemma5. Comparison of andC6 columns shows that the proposed separator-index bounding scheme

is very effective in restricting the search space for the separator indices in both SpM and DVR datasets. As

expected, the performance of index bounding decreases with increasing because of decreasing values.

The performance is better in the DVR dataset than the SpM dataset, because values are larger in the DVR

dataset. In Table 3, values less than 1 indicate that the index bounding scheme achieves non-overlapping index

ranges. As seen in the table, scheme C6 reduces the total separator-index range sizes below for each CCP

instance with 64 in both SpM and DVR datasets. These experimental results show that the proposed DP+

algorithm becomes a linear-time algorithm in practice.

The efficiency of the parametric-search approach depends on two critical issues: number of probe calls and

23

Table 4: Number of probe calls performed by the parametric search algorithms.
SPARSE-MATRIX DATASET DVR DATASET

CCP instance CCP instance
name K NC- NC NC+ BS BS+ EBS name K NC- NC NC+ BS+&BID EBS

16 177 21 7 17 6 7 16 202 18 6 16 + 1 9
32 352 19 7 17 7 7 32 407 19 7 19 + 1 10

NL 64 720 27 5 16 7 6 blunt256 64 835 18 10 21 + 1 12
128 1450 40 14 17 8 8 128 1686 25 15 22 + 1 13
256 2824 51 14 16 8 8 256 3556 203 62 23 + 1 11
16 190 20 6 19 7 5 16 245 20 8 17 + 1 9
32 393 25 11 19 9 8 32 502 24 13 18 + 1 10

cre-d 64 790 24 10 19 8 6 blunt512 64 1003 23 11 18 + 1 12
128 1579 27 10 19 9 9 128 2023 26 12 20 + 1 13
256 3183 37 13 18 9 9 256 4051 23 12 21 + 1 13
16 182 19 3 18 6 5 16 271 21 10 16 + 1 13
32 373 22 8 18 8 7 32 557 24 12 18 + 1 12

CQ9 64 740 29 12 18 8 8 blunt1024 64 1127 21 11 18 + 1 12
128 1492 40 12 17 8 8 128 2276 28 13 19 + 1 13
256 2971 50 14 18 9 9 256 4564 27 16 21 + 1 15
16 185 21 6 17 6 6 16 194 22 9 18 + 1 7
32 364 20 6 17 6 6 32 409 19 8 20 + 1 12

ken-11 64 721 48 9 17 7 7 post256 64 823 17 11 22 + 1 12
128 1402 61 8 16 7 7 128 1653 19 13 22 + 1 14
256 2783 96 7 17 8 8 256 3345 191 102 23 + 1 13
16 210 20 6 20 5 4 16 235 24 9 16 + 1 10
32 432 26 8 19 5 5 32 485 23 12 18 + 1 11

mod2 64 867 24 6 19 8 8 post512 64 975 22 13 20 + 1 14
128 1727 38 7 20 7 7 128 1975 25 17 21 + 1 14
256 3444 47 9 20 9 9 256 3947 29 20 22 + 1 15
16 211 22 6 19 5 4 16 261 27 10 17 + 1 13
32 424 26 5 19 6 6 32 538 23 13 19 + 1 14

world 64 865 30 12 19 9 9 post1024 64 1090 22 12 17 + 1 14
128 1730 44 10 19 8 8 128 2201 25 15 21 + 1 16
256 3441 44 11 19 10 10 256 4428 28 16 22 + 1 16

AVERAGES OVER K
16 193 20.5 5.7 18.5 5.8 5.2 16 235 22.0 8.7 16.7 + 1.0 10.2
32 390 23.0 7.5 18.3 6.8 6.5 32 483 22.0 10.8 18.7 + 1.0 11.5
64 784 30.3 9.0 18.0 7.8 7.3 64 976 20.5 11.3 19.3 + 1.0 12.7
128 1564 41.7 10.2 18.0 7.8 7.8 128 1969 24.7 14.2 20.8 + 1.0 13.8
256 3108 54.2 11.3 18.0 8.8 8.8 256 3982 83.5 38.0 22.0 + 1.0 13.8

cost of each probe call. The dynamic index bounding schemes proposed for the parametric-search algorithms

clearly reduce the cost of an individual probe call. Table 4 illustrates the performance of proposed parametric-

search algorithms in reducing the number of probe calls. For Table 4, in order to compare the relative

performance of EBS with BS+ on the DVR dataset, we enforced the BS+ algorithm to find optimal partitions

by running it with and then improving the resulting partition with the BID algorithm. Column

BS+&BID refers to this scheme, and values after “+” denote the additional bottleneck values tested by the

BID algorithm. As seen in Table 4, exactly one final bottleneck-value test was needed by the BID algorithm to

reach an optimal partition in each CCP instance.

In Table 4, comparison of NC- and NC columns shows that dynamic bottleneck-value bounding drastically

decreases the number of probe calls in Nicol’s algorithm. Comparison of BS and BS+ columns in the SpM

dataset shows that using instead of for the upper bound on the bottleneck values considerably reduces

the number of probes. Comparison of BS+ and EBS columns reveals two different behaviors on the SpM and

DVR datasets. Discretized dynamic bottleneck-value bounding used in EBS produces onlyminor improvement

on the SpM dataset because of the already discrete nature of integer-valued workload arrays. However, the

effect of discretized dynamic bottleneck-value bounding becomes significant on real-valued workload arrays

of the DVR dataset.

24

Table 5: Partitioning times for the sparse-matrix dataset as percents of SpMxV times.
SPARSE-MATRIX DATASET

HEURISTICS EXACT ALGORITHMS
CCP instance EXISTING PROPOSED
name H1 H2 RB DP MS BS NC DP+ MS+ BS+ NC+ BID

16 0.09 0.09 0.09 93 119 0.93 1.20 0.40 0.44 0.40 0.40 0.22
32 0.18 0.18 0.13 177 194 1.77 2.17 1.73 1.73 0.80 0.80 0.44

NL 64 0.35 0.35 0.31 367 307 3.15 5.85 5.81 4.12 1.86 1.77 1.82
128 0.89 0.84 0.71 748 485 6.30 17.12 19.87 26.92 4.26 7.32 4.21
256 1.51 1.55 1.37 1461 757 11.09 40.31 91.80 96.41 9.80 15.70 21.06
16 0.03 0.01 0.01 33 36 0.33 0.37 0.12 0.06 0.10 0.11 0.03
32 0.04 0.06 0.06 71 61 0.65 0.93 0.47 1.20 0.29 0.33 0.10

cre-d 64 0.12 0.12 0.08 147 98 1.22 1.69 1.66 1.83 0.61 0.71 0.21
128 0.28 0.29 0.14 283 150 2.41 3.59 5.47 10.94 1.68 1.68 0.61
256 0.53 0.54 0.25 571 221 4.20 10.22 27.05 26.02 3.30 4.46 1.20
16 0.04 0.04 0.04 59 73 0.48 0.59 0.20 0.13 0.15 0.13 0.17
32 0.09 0.09 0.07 127 120 0.94 1.31 0.94 0.72 0.41 0.41 0.28

CQ9 64 0.20 0.17 0.15 248 195 1.85 3.18 3.01 4.47 1.00 1.44 0.68
128 0.44 0.44 0.31 485 303 3.18 8.52 9.65 18.82 2.44 3.05 2.51
256 0.92 0.92 0.63 982 469 6.51 20.33 69.56 72.2 5.32 7.45 14.92
16 0.10 0.10 0.10 238 344 1.27 1.88 0.56 0.61 0.46 0.41 0.25
32 0.20 0.20 0.15 501 522 2.29 3.10 3.82 4.78 1.22 1.17 1.63

ken-11 64 0.46 0.46 0.36 993 778 4.48 13.08 9.41 24.78 3.10 3.46 2.29
128 1.17 1.17 0.71 1876 1139 9.21 39.59 50.13 50.03 6.41 6.62 17.4
256 2.14 2.14 1.42 3827 1706 17.76 119.13 129.01 241.48 14.91 14.50 29.11
16 0.02 0.02 0.01 92 119 0.27 0.34 0.07 0.05 0.06 0.06 0.03
32 0.04 0.04 0.02 188 192 0.51 0.78 0.19 0.18 0.16 0.15 0.07

mod2 64 0.11 0.10 0.06 378 307 1.04 1.91 0.86 2.18 0.51 0.55 0.23
128 0.24 0.23 0.11 751 482 2.28 5.92 2.61 3.72 1.06 1.23 0.53
256 0.48 0.48 0.23 1486 756 4.26 11.14 12.11 50.04 2.91 3.43 3.66
16 0.02 0.02 0.02 99 122 0.29 0.33 0.08 0.05 0.07 0.08 0.03
32 0.04 0.04 0.04 198 196 0.59 0.88 0.26 0.21 0.18 0.19 0.08

world 64 0.12 0.11 0.09 385 306 1.16 1.70 1.09 4.84 0.64 0.54 0.35
128 0.24 0.23 0.19 769 496 2.19 5.32 4.48 10.15 1.31 1.23 1.77
256 0.47 0.47 0.36 1513 764 4.06 11.83 11.54 69.99 3.46 3.50 2.48

AVERAGES OVER K
16 0.05 0.05 0.05 102 136 0.60 0.78 0.24 0.22 0.21 0.20 0.12
32 0.10 0.10 0.08 210 214 1.12 1.53 1.23 1.47 0.51 0.51 0.43
64 0.23 0.22 0.18 420 332 2.15 4.57 3.64 7.04 1.29 1.41 0.93
128 0.54 0.53 0.36 819 509 4.26 13.34 15.37 20.1 2.86 3.52 4.51
256 1.01 1.01 0.71 1640 779 7.98 35.49 56.84 92.69 6.62 8.17 12.07

Tables 5 and 6 display execution times of the CCP algorithms on the SpM and DVR datasets, respectively.

In Table 5, execution times are given as percents of single SpMxV times. Actual execution times of the CCP

algorithms can easily be recomputed from the SpMxV execution times given in Table 1. For the DVR dataset,

actual execution times (in msecs) are dissected into prefix-sum times and partitioning times. In Tables 5 and 6,

the execution times of the existing algorithms and their improved versions are listed in the same order under the

respective classification, so that amount of improvement in each algorithm can easily be seen. In both tables,

BID is listed separately since it is a new iterative-refinement algorithm. The results of both BS and BS+ are

listed in Table 5, since they are used as exact algorithms on the SpM dataset with 1. Since neither BS

nor BS+ can be used as an exact algorithm on the DVR dataset, EB—being an exact algorithm for general

workload arrays—is listed separately in Table 6.

As seen in Tables 5 and 6, the RB heuristic is faster than both H1 and H2 in both SpM and DVR datasets.

As also seen in Table 2, RB finds better partitions than both H1 and H2 in both datasets. These results show

that RB is a better heuristic than H1 and H2.

In Tables 5 and 6, relative performance comparison of existing exact CCP algorithms shows that NC is two

orders of magnitude faster than both DP and MS in both SpM and DVR datasets, and BS is considerably

25

Table 6: Partitioning times (in msecs) for the DVR dataset.
DVR DATASET

HEURISTICS EXACT ALGORITHMS
CCP instance prefix EXISTING PROPOSED

name sum H1 H2 RB DP MS NC DP+ MS+ NC+ EBS BID
16 0.02 0.02 0.03 68 49 0.36 0.21 0.53 0.10 0.14 0.03
32 0.05 0.05 0.05 141 77 0.77 0.76 0.76 0.21 0.27 0.24

blunt256 64 1.95 0.11 0.12 0.09 286 134 1.39 3.86 8.72 0.64 0.71 0.78
128 0.24 0.25 0.20 581 206 3.66 12.37 29.95 1.78 1.84 2.33
256 0.47 0.50 0.37 1139 296 52.53 42.89 0.78 13.96 3.11 56.69
16 0.03 0.03 0.03 356 200 0.55 0.25 0.91 0.14 0.16 0.09
32 0.07 0.07 0.07 792 353 1.31 1.23 2.13 0.44 0.43 0.22

blunt512 64 13.45 0.18 0.19 0.14 1688 593 2.65 3.68 9.28 0.94 1.10 0.45
128 0.39 0.40 0.28 3469 979 5.84 15.01 46.72 2.29 2.63 1.65
256 0.74 0.75 0.54 7040 1637 9.70 57.50 164.49 5.59 5.95 10.72
16 0.03 0.03 0.03 1455 780 0.75 0.93 4.77 0.25 0.28 0.19
32 0.12 0.11 0.08 3251 1432 1.81 2.02 8.92 0.60 0.62 0.31

blunt1024 64 59.12 0.27 0.27 0.19 6976 2353 3.50 7.35 22.28 1.27 1.37 1.39
128 0.50 0.51 0.37 14337 3911 9.14 33.01 69.38 3.36 3.56 16.21
256 0.97 1.00 0.68 29417 6567 16.59 180.09 538.10 8.48 8.98 16.29
16 0.02 0.03 0.03 79 61 0.46 0.18 0.13 0.10 0.11 0.24
32 0.05 0.05 0.05 157 100 0.77 1.05 1.74 0.26 0.31 0.76

post256 64 2.16 0.10 0.11 0.10 336 167 1.37 5.26 9.72 0.61 0.70 4.67
128 0.25 0.26 0.18 672 278 2.90 22.94 55.10 1.65 1.77 23.96
256 0.47 0.48 0.37 1371 338 45.16 84.78 0.77 13.04 3.62 299.32
16 0.02 0.02 0.03 612 454 0.63 0.20 0.44 0.14 0.16 1.21
32 0.07 0.07 0.07 1254 699 1.30 2.49 1.95 0.38 0.42 3.36

post512 64 20.55 0.18 0.18 0.13 2559 1139 2.58 16.93 38.73 0.97 1.07 8.53
128 0.38 0.39 0.28 5221 1936 5.84 68.25 156.15 2.27 2.44 31.54
256 0.70 0.73 0.53 10683 3354 12.67 256.48 726.54 5.44 5.39 140.88
16 0.03 0.04 0.03 2446 1863 0.91 2.88 5.73 0.17 0.21 2.63
32 0.09 0.08 0.08 5056 2917 1.61 13.57 17.37 0.51 0.58 12.73

post1024 64 69.09 0.25 0.26 0.17 10340 4626 3.56 35.05 33.25 1.35 1.47 32.53
128 0.51 0.53 0.36 21102 7838 7.90 156.34 546.92 2.95 3.28 76.96
256 0.95 0.98 0.67 43652 13770 16.30 764.59 1451.87 7.55 7.02 300.70

AVERAGES (normalized w.r.t. RB times) OVER K
(prefix-sum time not included)

16 0.83 0.94 1.00 27863 18919 20.33 25.83 69.50 5.00 5.89 24.39
32 1.10 1.06 1.00 23169 12156 18.47 47.37 72.82 5.83 6.46 39.02
64 1.30 1.35 1.00 22636 9291 17.88 82.81 145.19 7.00 7.81 53.81
128 1.35 1.39 1.00 22506 7553 20.46 168.36 481.19 8.60 9.31 86.81
256 1.35 1.39 1.00 24731 6880 59.10 390.25 772.99 19.55 10.51 286.77

AVERAGES (normalized w.r.t. RB times) OVER K
(prefix-sum time included)

16 1.00 1.00 1.00 32 23 1.08 1.04 1.09 1.01 1.02 1.03
32 1.00 1.00 1.00 66 36 1.15 1.21 1.29 1.04 1.05 1.13
64 1.00 1.00 1.00 135 58 1.27 1.97 2.90 1.11 1.12 1.55
128 1.01 1.01 1.00 275 94 1.62 4.75 10.53 1.28 1.30 3.25
256 1.02 1.02 1.00 528 142 7.98 14.64 13.71 2.95 1.55 26.73

faster than NC on the SpM dataset. These results show that among the existing algorithms parametric-search

approach leads to faster algorithms than both dynamic-programming and iterative-improvement approaches.

Tables 5 and 6 show that our improved algorithms are significantly faster than the respective existing

algorithms. In dynamic-programming approach, DP+ is two-to-three orders of magnitude faster than DP such

that DP+ competes with the parametric-search algorithms. In the SpM dataset, DP+ is 630 times faster than DP

on average in 16-way partitioning, and this ratio decreases to 378, 189, 106, and 56 with increasing values,

32, 64, 128, and 256, respectively. In the DVR dataset, if initial prefix-sum is not included, DP+ is 1277, 578,

332, 159, and 71 times faster than DP for 16, 32, 64, 128, and 256, respectively, on average. This decrease

is expected since effectiveness of separator-index bounding decreases with increasing . These experimental

findings agree with the variation of the effectiveness of separator-index bounding values displayed in Table 3.

In iterative refinement approach, MS+ is also one-to-three orders of magnitude faster than MS, where this

26

drastic improvement simply depends on the scheme used for finding an initial leftist partition.

As seen in Tables 5 and 6, significant improvement ratios are also obtained in the parametric search

algorithms. On average, NC+ is 4.2, 3.5, 3.1, 3.7, and 3.7 times faster than NC for 16, 32, 64, 128, and

256, respectively, in the SpM dataset. In the DVR dataset, if initial prefix-sum time is not included, NC+ is 4.2,

3.2, 2.6, 2.5, and 2.7 times faster than NC for 16, 32, 64, 128, and 256, respectively. In the SpM dataset,

BS+ is 3.4, 2.5, 1.8, 1.6, and 1.3 times faster than BS for 16, 32, 64, 128, and 256, respectively. These

improvement ratios on the execution times of the parametric search algorithms are below the improvement

ratios on the numbers of probe calls displayed in Table 4. Overhead due to the RB call and initial settings of

the separator indices contributes to this difference in both NC+ and BS+. Furthermore, costs of initial probe

calls with very large bottleneck values are very cheap in BS.

In Table 5, relative performance comparison of the proposed exact CCP algorithms shows that BID is the

clear winner for small to moderate values (i.e., 64) in the SpM dataset. The relative performance of

BID degrades with increasing so that both BS+ and NC+ begin to run faster than BID for 128 in

general, where BS+ becomes the winner. In the DVR dataset, NC+ and EBS are clear winners as seen in

Table 6. NC+ runs slightly faster than EBS for 128, however EBS runs considerably faster than NC+ for

256. BID can compete with these two algorithms only in 16 and 32 way partitioning of grid blunt-fin (for

all mesh resolutions). As seen in Table 5, BID takes less than 1 percent of a single SpMxV time for 64

on average. In the DVR dataset (Table 6), the initial prefix-sum time is considerably larger than the actual

partitioning time of the EBS algorithm in all CCP instances except 256-way partitioning of post256. As seen

in Table 6, EBS is only 12 percent slower than the RB heuristic in 64-way partitionings on average. These

experimental findings show that the proposed exact CCP algorithms should replace heuristics.

7 Conclusion
We proposed runtime efficient chains-on-chains partitioning algorithms for optimal load balancing in one-

dimensional decomposition of nonuniform computational domains. Our main idea was to run an effective

heuristic, as a pre-processing step, to find a “good” upper bound on the optimal bottleneck value, and then

exploit the lower and upper bounds on the optimal bottleneck value to restrict the search space for separator-index

values. This separator-index bounding scheme was exploited in a static manner in the dynamic-programming

algorithmdrastically reducing the number of table entries computed and referenced. A dynamic separator-index

bounding scheme was proposed for parametric search algorithms to narrow separator-index ranges after each

probe call. We enhanced the approximate bisection to be an exact algorithm by updating lower and upper

bounds into realizable values after each probe call. We proposed a new iterative-refinement scheme, which

is very fast for small to medium number of processors. We also showed that the proposed algorithms can be

used for heterogeneous parallel systems with minor modifications, and proved the NP-Completeness of the

chains partitioning problem for heterogeneous systems, where processor permutation is allowed in subchain to

processor assignment.

27

We investigated two distinct application domains for experimental performance evaluation: 1D decomposi-

tion of irregularly sparse matrices for parallel matrix-vector multiplication, and decomposition for image-space

parallel volume rendering. Experiments on the sparse matrix dataset showed that 64-way decompositions

can be achieved in 100 times less than a single matrix vector multiplication time, while producing 4 times

better load imbalance values than the most effective heuristic, on average. Experimental results on the volume

rendering dataset showed that exact algorithms can produce 3.8 times better 64-way decompositions than the

most effective heuristic, while being only 11 percent slower, on average.
Appendix A

A Better Load Balancing Model for Iterative Solvers
Load balancing problem in parallel iterative solvers has been mostly stated by considering only the SpMxV

computations since they constitute the most time consuming operation. However, linear vector operations

(i.e., DAXPY and inner-product computations) involved in iterative solvers may have a considerable effect

on the parallel performance with increasing sparsity of the coefficient matrix. In this appendix, we consider

incorporating linear vector operations into the load-balancing model as much as possible.

For the sake of discussion, we will investigate this problem for the coarse-grain formulation [2, 3, 37] of

the well-known conjugate-gradient (CG) algorithm. In this CG algorithm, each iteration involves, in order

of computational dependency, one SpMxV, two inner-product, and three DAXPY computations. DAXPY

computations do not involve communication, whereas inner-product computations necessitate a post global

reduction operation [23] on the results of the two local inner-product results. Note that load balancing

problem can only be defined precisely between two successive synchronization points. In rowwise striping,

the pre-communication operation needed for SpMxV and the global reduction operation constitute the pre

and post synchronization points, respectively, for the aggregate of one local SpMxV and two local inner-

product computations. In columnwise striping, the global reduction operation in the current iteration and post-

communication operation needed for SpMxV in the next iteration constitute the pre and post synchronization

points, respectively, for the aggregate of three local DAXPY and one local SpMxV computations. So,

columnwise stripingmay be favored for a wider coverage of load balancing. Each vector entry incurs a multiply-

and-add operation during each linear vector operation. Hence, DAXPY computations can easily be incorporated

into the load-balancing model for the CS scheme, by adding a constant cost of 3 to the computational weight

of the atomic task representing column of matrix . Initial prefix-sum operation needed in the CCP

algorithms can still be avoided by computing a subchain weight as COL 1 COL 3 1 in

constant time. Note that two local inner-product computations still remain uncovered in this balancing model.

Appendix B
Partitioning Chains for Heterogeneous Systems

This paper focused on chain partitioning algorithms for homogeneous parallel systems, i.e., the execution

time of each task is equal on all processors. However, heterogeneous systems have growing importance because

of growing popularity of build-it-yourself parallel computers, epitomized by Beowulf-class machines [38].

28

HPROBE
0 0; 1;

1;
while and do

BINSRCH 1 ;
;

1;
if then
return TRUE ;

else
return FALSE;

Figure 11: Probe function modified for heterogeneous processors.

Parallel systems built in this way are very likely to exhibit processor heterogeneity. Two distinct problems arise

in partitioning chains for heterogeneous systems, referred to here as chains-on-chains partitioning problem for

heterogeneous systems (CCP-HET) and chain partitioning problem for heterogeneous systems (CP-HET). In

CCP-HET problem, a chain of tasks is to be mapped onto a chain of processors, i.e., th subchain in a partition

is assigned to the th processor. In CP-HET problem, a chain of tasks is to be mapped onto a set—as opposed to

a chain—of processors, i.e., the processors can be permuted for subchain assignment. Following two sections

discuss these two problems.

B.1 CCP Problem on Heterogeneous Systems
In the CCP-HET problem, a chain 1 2 of tasks, with weights 1 2

is to be mapped onto a chain 1 2 of processors with associated execution speeds

1 2 . The execution time of task on processor is equal to . Cost of a partition

is determined by the maximum execution time among all processors. The objective is to find a partition

0 0 1 , where 1 for 0 1 1, with minimum cost

max
1

1 1

All algorithms presented in Sections 3 and 4 can be enhanced to optimally solve HET-CCP, without altering

the complexities. For HET-CCP algorithms, the weight of a task should be replaced with the execution time of a

task on a processor. We will briefly describe guidelines for some of the algorithms due to space considerations.

We can bound the value of an optimal solution for HET-CCP, using the same techniques we did for CCP. The

lower bound is achieved when all processors are equally loaded, i.e., 1 . The upper

bound can be found in practice with a fast and effective heuristic. We can give min 1

as a theoretically robust bound for many greedy heuristics. As a constructive proof for this result: assume each

processor is minimally loaded to surpass . The worst case occurs when we have to include the maximally

weighted task to surpass , and this happens for the slowest processor. Notice that the load of the last

processor will always be less than or equal to .

A probe function HPROBE for heterogeneous systems is presented in Fig. 11. In this algorithm, the

execution speed of each processor is enrolled in before binary search, when we compute the load of a processor.

We scale the total weight of tasks to be assigned to a processor, proportional to its execution speed. This probe

function can be used to bound separator indices according to Lemma 2 and Corollary 6.

29

The recursion given in (1) for the dynamic programming solution can be restated as:

min
1

max 1 1

This equation defines an 2 algorithm, but the observations given in Section 3.2 for reducing the

complexity to are still valid. All that needs to be done is to replace subchain weight computations

in the DP and DP+ algorithms presented in Figs. 1 and 6, with .

To enhance the bidding algorithm for heterogeneous systems, we have to be able to compute the next

smallest candidate bottleneck value, and move the separators according to this new value. The bid of a

processor can be computed as the total chain weight with one more task added, divided by the execution

speed . Let 0 1 be the current solution. The bid of processor is 1 1 1 for

1 2 1. The bid of the last processor can be computed as the remaining task weight divided by the

execution speed of the last processor, i.e., 1 1 . Once we decide on the next candidate bottleneck

value, we have to adjust the separator indices by adding/removing tasks to/from processors. While adding

(removing) a task to (from) a processor we add (subtract) the weight of the task divided by the execution speed

of the respective processor.

The lower and upper bounds together with the HPROBE function is sufficient for the -approximate

bisection algorithm. For the exact bisection algorithm, we need to move upper and lower bounds to realizable

bottleneck values. As in CCP, our probe function constructs a solution, hence we already have a realizable

upper bound when the probe succeeds. When the probe fails, we can use the bid value that is described in the

previous paragraph. Therefore we can restrict our search space to realizable bottleneck values. Each probe

call helps us to eliminate at least one candidate bottleneck value, the bisection algorithm terminates in finite

number of steps to find the optimal solution value.

The proposed techniques can be enhanced further to solve the CCP problem, when execution time of a task

is an arbitrary function of the processor that the task is assigned to (provided that the execution time is positive).

The presented algorithms can still be adapted for this problem without altering their complexities. In this case,

we no longer have a definition of weight of a task , but have definition of weight of a task for a processor

, , which should be used for computing the load of a processor.

B.2 Chains Partitioning for Heterogeneous Systems
The solution to this problem is not only the separators, but also processor assignments for subchains. Thus,

we define a mapping as a partition 0 0 1 of the given task chain 1 2

with 1 for 0 1 1, and a permutation 1 2 of the given set of processors

1 2 . According to this mapping, th task subchain 1 1 is executed on

processor . Cost of a mapping is the largest subchain computation time, which is determined by

the subchain weight and the execution speed of the assigned processor, i.e.,

max
1

1 1

30

Below we provide a formal definition of the decision problem, followed by NP-Completeness proof.

Given a chain of tasks 1 2 , a weight for each , a set of processors

1 2 such that and an execution rate for each . Decide if there

exists a mapping of chain onto set of processors such that is less than or equal to a specified

value.

LEMMA B1. The chain-partition problem is NP-Hard.

PROOF. We will use reduction from 3-Partition (3P) problem. A pseudo-polynomial transformation suffices,

because 3P problem is NP-Complete in the strong sense (i.e., there is no pseudo-polynomial time algorithm for

the problem unless P=NP). The 3P problem is stated in [10] as follows.

Given a finite set of 3 elements, a bound , and a cost for each , such that each

satisfies 4 2 and such that . Decide if can be partitioned into disjoint

sets 1 2 such that for 1 2 .

For a given instance of the 3P problem, corresponding chain partitioning problem is constructed as follows.
The number of tasks is 1 1. The weight of every 1 st task is , (i.e., for

1 0), and the weights of all other tasks are 1.

The number of processors is 4 1. The first 1 processors have execution speeds of , (i.e.,

for 1 2 1), and the remaining processors have execution speeds equal to costs of

items in the 3P problem (i.e., 1 for 4 1).
We claim that there is a solution to the 3P problem if there is a mapping with cost 1 for the chain

partitioning problem. The following observations constitute the basis for our proof.
The processors with execution speeds of must be mapped to tasks with weight to have a solution

with cost 1, because the execution speeds of all other processors are less than or equal to 2.

These processors (tasks) serve as divider processors (tasks).

The total weight of the chain is 3 1 3 . The sum of the execution speeds of

all processors is also 1 3 3 . This forces each processor to be assigned a load

with value equal to its execution speed, to achieve a mapping with cost 1. This observation can

be generalized: If a subchain of tasks with total weight is mapped to a subset of processors with total

execution speed , then , to have a solution with 1. Notice that the reverse direction of

the proposal also holds thanks to the unit-weight tasks between the dividers.
As noted above, divider processors should be assigned to divider tasks. Between two successive divider

tasks there is a subchain of unit-weight tasks with total weight , which must be assigned to a subset of

processors with total execution speed . Since there are such subchains, the same grouping is also valid for

grouping values in the 3P problem.

THEOREM B2. The chain partition problem is NP-Complete.

PROOF. The cost of a given mapping can be computed in polynomial time, thus the problem is in NP. With the

result of Lemma B1, we can conclude that the chain partition problem is NP-Complete.

31

References
[1] S. Anily and A. Federgruen, Structured partitioning problems, Operations Research 13, (1991), 130–149.
[2] C. Aykanat and F. Ozguner, Large Grain Parallel Conjugate Gradient Algorithms on a Hypercube Multiprocessor,

in “Proc. 1987 Int. Conf. on Parallel Processing,” pp. 641–645, 1987.
[3] C. Aykanat, F. Ozguner, F. Ercal, and P. Sadayappan, Iterative algorithms for solution of large sparse systems of

linear equations on hypercubes, IEEE Trans. on Computers 37, 12 (Dec. 1988), 1554–1567.
[4] S. H. Bokhari, Partitioning problems in parallel, pipelined, and distributed computing, IEEE Trans. on Computers

37, 1 (1988), 48–57.
[5] Ü. V. Çatalyurek and C. Aykanat, Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector

multiplication, IEEE Trans. on Parallel and Distributed Systems 10, 7 (1999), 673–693.
[6] H. Choi and B. Narahari, Algorithms for mapping and partitioning chain structured parallel computations, in, “Proc.

1991 Int. Conf. on Parallel Processing,” pp. I-625–I-628, 1991.
[7] G. N. Frederickson, “Optimal algorithms for partitioning trees and locating -centers in trees,” Purdue Univ. Tech.

Rep. CSD-TR-1029, Purdue University, 1990.
[8] G. N. Frederickson, Optimal algorithms for partitioning trees. in, “Proc. Second ACM-SIAM Symp. Discrete

Algorithms,” pp. 168–177, 1991.
[9] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified NP-complete graph problems,” Theoretical

Computer Science, vol. 1, pp. 237–267, 1976.
[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, San

Fransisco, U.S.A.: W. H. Freeman, 1979.
[11] D. M. Gay, Electronic mail distribution of linear programming test problems, Mathematical Programming Society

COAL Newsletter, (1985).
[12] Y. Han, B. Narahari, and H.-A. Choi, Mapping a chain task to chained processors, Infor. Proc. Let. 44, (1992),

141–148.
[13] P. Hansen and K. W. Lih, Improved algorithms for partitioning problems in parallel, pipelined and distributed

computing, IEEE Trans. Computers 41, 6 (June 1992), 769–771.
[14] B. Hendrickson and T.G. Kolda, Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for

Parallel Processing, SIAM J. Scientific Computing, to appear.
[15] IOWAOptimization Center, Linear programming problems, ftp://col.biz.uiowa.edu:pub/testprob/lp/gondzio.
[16] M. A. Iqbal, “Approximate algorithms for partitioning and assignment problems,” ICASE Rep. No. 86-40, NASA

Contractor Report 178130, June 1986.
[17] M. A. Iqbal, J. H. Saltz, and S. H. Bokhari, A comparative analysis of static and dynamic load balancing strategies,

in “Proc. 1986 Int. Conf. on Parallel Processing,” pp. 1040–1047, 1986.
[18] M. A. Iqbal, Efficient Algorithms for Partitioning Problems. in “Proc. 1990 Int. Conf. on Parallel Processing

(ICPP’90),” pp. III-123–III-127, 1990.
[19] M. A. Iqbal and S. H. Bokhari, “Efficient algorithms for a class of partitioningproblems,” ICASE Report No. 90-49,

July 1990.
[20] M. A. Iqbal, Approximate algorithms for partitioning and assignment problems. Int. J. Parallel Programming 20,

5 (1991).
[21] M. A. Iqbal and S. H. Bokhari, Efficient algorithms for a class of partitioning problems, IEEE Trans. Parallel and

Distributed Systems 6, 2 (1995), 170–175.
[22] D. M. Kincaid, D. M. Nicol, D. Shier, and D. Richards, A multistage linear array assignment problem, Operations

Research 38, 6 (1990), 993–1005.
[23] V. Kumar, A. Grama, A. Gupta, and G. Karypis, “Introduction to Parallel Computing,” Benjamin/Cummings,

Redwood City, California, 1994.
[24] H. Kutluca, T. M. Kurç, and C. Aykanat, Image-space decomposition algorithms for sort-first parallel volume

rendering of unstructured grids, J. Supercomputing, 15(1), (2000), 51–93.
[25] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout. Chichester, U.K.: Wiley, 1990.

32

[26] F. Manne and T. Sørevik, Optimal partitioning of sequences, J. Algorithms 19, (1995), 235–249.
[27] S. Miguet and J. M. Pierson, Heuristics for 1D rectilinear partitioning as a low cost and high quality answer to

dynamic load balancing, Lecture Notes in Computer Science 1225, (1997), 550–564.
[28] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, A sorting classification of parallel rendering, IEEE Computer

Graphics and Applications 14, 4 (1994), 23–32.
[29] C. Mueller, The sort-first rendering architecture for high-performance graphics, in “Proc. 1995 Symposium on

Interactive 3D Graphics,” pp. 75–84, 1995.
[30] D. M. Nicol and D. R. O’Hallaron, Improved algorithms for mapping pipelined and parallel computations. ICASE

Report 88-2, NASA Contractor Report 181655, April 1988.
[31] D. M. Nicol and D. R. O’Hallaron, Improved algorithms for mapping pipelined and parallel computation, IEEE

Trans. Computers 40, 3 (1991), 295–306.
[32] D.M. Nicol, Rectilinear partitioningof irregular data parallel computations. ICASE Report 91-55, NASAContractor

Report 187601, July 1991.
[33] D. M. Nicol, Rectilinear partitioning of irregular data parallel computations, J. Parallel and Disributed Computing

23, (1994), 119–134.
[34] B. Olstad and F. Manne, Efficient partitioning of sequences, IEEE Trans. Computers 44, 11 (1995), 1322–1326.
[35] J. R. Pilkington and S. B. Baden, Dynamic partitioning of non-uniform structured workloads with spacefilling

curves, IEEE Trans. Parallel and Distributed Systems 7, 3 (1996), 288–299.
[36] L. F. Romero and E. L. Zapata, Data distributions for sparse matrix vector multiplication, Parallel Computing 21,

(1995), 583–605.
[37] Y. Saad, Practical use of polynomial preconditionings for the conjuagte gradient method, SIAM J. Scientific and

Statistical Computing 6, 5 (1985), 865–881.
[38] T. Sterling, et al., Beowulf: A Parallel Workstation for Scientific Computation. in “Proc. 1995 Int. Conf. on Parallel

Processing (ICPP’95),” pp. I-11–I-14, 1995.
[39] M. U. Ujaldon, E. L. Zapata, S. D. Sharma, and J. Saltz, Parallelization techniques for sparse matrix applications, J.

Parallel and Distributed Computing 38, (1996), 256–266.
[40] M. U. Ujaldon, E. L. Zapata, S. D. Sharma, and J. Saltz, Experimental evaluation of efficient sparse matrix

distributions, in “Proc. ACM Int. Conf. of Supercomputing,” pp. 78–86, 1996.
[41] M.U.Ujaldon, E. L. Zapata, B.M. Chapman, andH. P. Zima, Vienna-Fortran/HPFextensions for sparse and irregular

problems and their compilation, IEEE Trans. Parallel and Distributed Systems 8, 10 (Oct. 1997), 1068–1083.

33

